PDF(3169 KB)
","magId":"2151e6bf-a468-4726-915d-3439242d385b","labelCn":"图1","pptUrl":"1673-0291-2025-49-2-95/949D4A46-DB09-4754-8E18-3684337D472D-F001.jpg.ppt","labelEn":"Fig.1","figUrl":"1673-0291-2025-49-2-95/949D4A46-DB09-4754-8E18-3684337D472D-F001.jpg","titleEn":"Fig.1 Schematic diagram of supporting structure section and stratigraphic characteristics(Unit: m)","titleCn":"图1 支护结构剖面及地层特征示意图(单位:m)","id":"F1","captionEn":"
";
ss += ""+fig.titleEn+"
"; } if(fig.titleContentEn && fig.titleContentEn!=''){ shuomingContent += fig.titleContentEn; } } ss += ''+shuomingTitle+''; if(shuomingContent!=''){ ss += shuomingContent; } ss += ' |
"+tab.titleEn+"
"; } if(tab.titleContentEn && tab.titleContentEn!=''){ shuomingContent += tab.titleContentEn; } } ss += '| '; if(fn.label && fn.label!=''){ ss += fn.label; } ss += ' | '; ss += '';
if(fn.pList && fn.pList.length>0){
for(var k=0;k |
基于融合注意力机制BP神经网络的深基坑变形预测方法
张明聚, 秦胜旺, 李鹏飞, 葛辰贺, 杨萌, 谢治天
PDF(3169 KB)
PDF(3169 KB)
基于融合注意力机制BP神经网络的深基坑变形预测方法
Deep excavation deformation prediction method based on BP Neural Network with integrated attention mechanism
| {{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
| 〈 |
|
〉 |