PDF(1302 KB)
","magId":"37ba6cbb-f1f6-4a4f-9dcf-3712250f00a1","labelCn":"图 1","pptUrl":"1673-0291-2025-49-4-115/4A33E645-6520-4394-8589-0C56DEF9931A-F001.jpg.ppt","labelEn":"Fig.1","figUrl":"1673-0291-2025-49-4-115/4A33E645-6520-4394-8589-0C56DEF9931A-F001.jpg","titleEn":"Fig.1 Heatmap of feature correlations with transportation time","titleCn":"图 1 各特征对运输时间相关性热力图","id":"F1","captionEn":"
";
ss += ""+fig.titleEn+"
"; } if(fig.titleContentEn && fig.titleContentEn!=''){ shuomingContent += fig.titleContentEn; } } ss += ''+shuomingTitle+''; if(shuomingContent!=''){ ss += shuomingContent; } ss += ' |
"+tab.titleEn+"
"; } if(tab.titleContentEn && tab.titleContentEn!=''){ shuomingContent += tab.titleContentEn; } } ss += '| '; if(fn.label && fn.label!=''){ ss += fn.label; } ss += ' | '; ss += '';
if(fn.pList && fn.pList.length>0){
for(var k=0;k |
基于CNN-GRU-Attention模型的铁路集装箱运输时间预测
王辉, 宋瑞, 何维, 蔡近近, 龙泽雨, 丛铭
PDF(1302 KB)
PDF(1302 KB)
基于CNN-GRU-Attention模型的铁路集装箱运输时间预测
Railway container transportation time prediction based on CNN-GRU-Attention model
| {{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
| 〈 |
|
〉 |