%0 Journal Article %A 安俊峰 %A 刘吉强 %A 卢萌萌 %A 李罡 %T 基于改进YOLOv8的地铁站内乘客异常行为感知 %D 2024 %R 10.11860/j.issn.1673-0291.20230125 %J 星空电竞app2026最新版学报 %P 76-89 %V 48 %N 2 %X
当地铁站内乘客出现异常行为时,若未能及时发现可能会引起乘客不满、投诉,甚至导致安全问题,从而影响运营效率,造成恶劣影响.而当前常用的盯控视频画面的方式存在容易遗漏和效率低的问题.为及时感知异常行为,提出一种云边协同的异常行为感知总体架构.首先,通过人工演绎的方法在地铁站内采集异常行为图像,构造包含11种异常行为的数据集;其次,针对边/端侧能够自主训练和推理但算力较小的特点,提出模型压缩算法,构建MINI-BLOCK模块并将其组合为i-C2f模块,用于替换YOLOv8中的C2f模块;再次,针对云侧计算资源集中的特点,分别构建2个基于YOLOv8的改进模型,即ModelA和ModelB,ModelA的架构为“DCNv2_Dynamic-BiFPN-EMA”,ModelB的架构为“DCNv2-BiFPN-EMA”;最后,在构造的数据集上,对提出的3种优化模型与YOLOv8进行对比实验.研究结果表明:相较于YOLOv8,3种优化模型均取得了更优的检测性能,边/端侧模型的精确率提升了1.0%,模型参数降低了4.7%;ModelA的召回率、mAP50、mAP50:95分别提升了2.2%、3.7%、2.9%;ModelB的召回率、mAP50、mAP50:95分别提升了5.8%、6.7%、2.8%.研究结果能够为地铁乘客异常行为感知的相关研究提供参考.
%U https://jdxb.bjtu.edu.cn/CN/10.11860/j.issn.1673-0291.20230125